MASTER ALLOY DIVISION TECHNICAL DATASHEET AND GUIDELINE NI1811-RHC Title 18 Kt Low nickel release all-purpose master alloy for 585-750‰ (14-18 Kt) white gold #### **GENERAL INFORMATION** | Typology | Master alloy for gold | |--------------------|--------------------------| | Production process | Universal | | Color | White low nickel release | | Color shade | Off-white | | Density [g/cm³] | 14.6 | | Melting t | emperatures | | Solidus [°C] | 860 | | Liquidus [°C] | 910 | | Commerci | al | |-------------|----| | composition | on | | Cu (%) | 79 | | Ni (%) | 12 | | Zn (%) | 9 | | | | | | | | | | #### **FULL CHARACTERIZATION DATA** | General characteristics | | |---|------| | Ni release, average value [µg/cm2/week] | 0.04 | | Ni release, maximum value [µg/cm2/week] | 0.08 | | Color coordinates | | | L* | 86.6 | | a* | 4.2 | | b* | 11.4 | | C* | 12.1 | | Yellow index | 26 | | Mechanical characteristics | | |---|-----| | As cast hardness [HV 0.2] | 190 | | Single step age-hardening hardness [HV 0.2] | 300 | # PRODUCT APPLICATIONS Casting in closed systems Casting without stones Stone-in-place casting Age-hardening | | RELATED PRODUCTS | |------------|------------------------------------| | NI1811-RHB | The lowest nickel release values | | LSG406B | Soft solder for 750‰ yellow gold | | LSG409D | Medium solder for 585‰ yellow gold | | LSG409V | Medium solder for 750% yellow gold | ## MASTER ALLOY DIVISION TECHNICAL DATASHEET AND GUIDELINE NI1811-RHC Title 18 Kt Low nickel release all-purpose master alloy for 585-750‰ (14-18 Kt) white gold #### **CASTING PROCESSING PARAMETERS** | Casting temperatures | Metal - from [°C] | Metal - to [°C] | Flask - from [°C] | Flask - to [°C] | |-----------------------------|-------------------|-----------------|-------------------|-----------------| | Thin (below 0.5 mm) | 1010 | 1040 | 650 | 700 | | Medium (from 0.5 to 1.2 mm) | 990 | 1010 | 580 | 650 | | Thick (above 1.2 mm) | 970 | 990 | 460 | 600 | #### Stone-in-place casting trees Let the flask cool down for 30-45 minutes, then quench in water. #### Trees without stones Let the flask cool down for 10-15 minutes, then quench in water. #### **Pickling** Dip in RADIAL solution (50 g/l conc. at 60°C for 5-10 min.), or in sulphuric acid (10% conc. at 50°C for 10 min.) #### **MECHANICAL WORKING PARAMETERS** | Casting temperature | Metal - from [°C] | Metal - to [°C] | |---------------------|-------------------|-----------------| | Ingot making | 990 | 1030 | | Continuous casting | 1010 | 1090 | | Recommended reductions | | |-------------------------------|----| | Sheet - area or thickness [%] | 70 | | Wire - diameter [%] | 45 | | Mechanical working recommended annealing | Temperature - from [°C] | Temperature - to [°C] | Time [min] | |--|-------------------------|-----------------------|------------| | > 5 mm | 720 | 740 | 40 | | 1 - 5 mm | 720 | 740 | 35 | | < 1 mm | 720 | 740 | 30 | #### AGE HARDENING PROCESSING PARAMETERS | Single step age-hardening treatment | Temperature [°C] | Time [min] | Quenching | |-------------------------------------|------------------|------------|-----------| | Age-hardening | 300 | 90 | | ## MASTER ALLOY DIVISION TECHNICAL DATASHEET AND GUIDELINE NI1811-RHC Title 18 Kt Low nickel release all-purpose master alloy for 585-750‰ (14-18 Kt) white gold #### PRODUCT TECHNICAL GUIDELINES | Finishing and cleaning | Only mirror-finish, shiny surfaces are allowed; surface before plating should have the minimum roughness compatible with that accepted for goldsmithry finishing, after using polishing wheels with fine polishing pastes. | |----------------------------|--| | Post
assemblies | Legor Group policy is that for post assemblies and parts in contact with pierced skin, nickel based alloys should be avoided; this because skin elicitation to nickel ions can occur even for release values that are compliant to the standards. | | Parts
assemblies | Mechanical assemblies of items constituted by the same alloy at 750% title are to be preferred. Items of other compositions are allowed for assembly (mechanical or by soldering), provided that they are nickel-free. | | Microstructure of the item | The item before finishing, or at least the composing items before soldering should be thermally homogenized (760°C x 40' followed by quenching) or annealed (680°C x 30'). Thermal treatments must be done in fornace providing temperature control and protective atmospher | | Soldering | Soldering techniques that give a good process control are to be preferred: a. Furnace soldering (with or without soldering pastes) b. Laser soldering with or without external material (same composition of the alloy at 750% title). Note: although not forbidden, torch soldering is not advised. | | Conclusive
notes | Precious elements content: NI1811-RHC contains rhodium, an element from the platinum group. This element, during fire assay (cupellation) test, cannot be separated from gold: rhodium content sums up to that of gold. It is advised to declare the presence of rhodium in the alloy on the documentation related to the jewels made using NI1811-RHC (For example: "Au 750% + Rh 3,75% alloy"). Notes: The jewelry manufacturing company is the only and sole responsible in front of the end user for what concerns the compliance of UNI EN 1811:2011 standard on a jewelry item. | | Pre-mixing | It is advised to pre-mix materials, by granulation or by casting of a semifinished item (bar, wire). This in order to optimize title and homogenization of the elements in the alloy. | | Surface porosity | An item without porosity generates on average a lower nickel release than a porous object. | | Material re-
usage | The maximum amount of reused metal allowed is of 50% in weight. The material should be clean, deoxidized and without inclusions. It's anyway advisable to not exceed 30% re-used metal. | ## MASTER ALLOY DIVISIO TECHNICAL DATASHEET AND GUIDELINE ### NI1811-RHC Title 18 Kt Low nickel release all-purpose master alloy for 585-750% (14-18 Kt) white gold Processing Strictly respect process temperatures indicated in the technical chart. Preferably use casting systems that temperatures provide an easy measurement of the metal temperature. Flasks and temperatures For casting processes do not exceed 700°C for the investment flask. Use high quality investment in order to reduce reactivity between metal and flask. For casting without stones, guench within 20 minutes after pouring. quenching time For casting with stones quench within 45 minutes after pouring Preliminary checks A preliminary check on the process and on the kind of items to be produced has to be done, in order to identify possible critical steps. Some kinds of production processes or of finishing are incompatible with nickel release reduction: they have to be eliminated or at least limited and measured, even when using a low nickel release In order to minimize nickel release, it is important to obtain objects as much as possible without porosity, shiny, with homogeneous microstructure and with the minimum amount of soldered joints. Nickel release depends on very wide range of factors: it is necessary to obtain statistics that are based on one's specific objects, making frequent release tests, if necessary on several models. Final results This approach is valid also for low nickel release compositions; when starting to use these alloys, they should be frequently tested for nickel release. Nickel release test is as a matter of fact mandatory, because it is needed to assessement obtain a statistical database on the items of a customer. This is the best way to monitor the correct functioning of the final product. > An item with low nickel release, on which a plating layer at guaranteed thickness is deposited, allows to pass the accelerated wear test prescribed by the UNI EN 12472:2009 standard. Below, two preferred alternative methods to obtain wear resistant plating layers are described: - Thick Palladium + thick Rhodium (Pd 0,5 µm + Rh 0,20 µm) - Thick Rhodium (Rh >0,25 µm) **Plating** processes Using these plating layers, Legor Group tests have shown reduction on nickel release values of approximately 5 times in comparison with the same item without plating. Preferred plating products: RH2M (Ready to use Rhodium plating solution for thick deposits) PDXW or PDFE (Palladium for bath larger than 40 liters) PD3-ECO or PD4-FE (Palladium for bath smaller than 40 liters) LEGOR GROUP S.p.A. - Via del Lavoro, 1 - 36050 Bressanvido (VI) Italy - tel. +39 0444 467911 - fax +39 0444 660677- info@legor.com - www.legorgroup.com